Machine learning aplicado usando Python
Todo lo que necesitas saber sobre Machine learning aplicado usando Python
Objetivos de Machine learning aplicado usando Python
Desarrollar, implementar y validar modelos de aprendizaje máquina (Machine Learning): diseñar modelos predictivos de clasificación en problemas reales de salud, economía y empresa, implementar algoritmos de segmentación para análisis de poblaciones en diferentes aplicaciones y desarrollar modelos de predicción avanzados de series temporales.
Contenidos de Machine learning aplicado usando Python
1. INTRODUCCIÓN AL CURSO
1.1. Introducción al Python
1.2. Librería de Python para Machine Learning.
1.3 Machine Learning. Introducción.
2. APRENDIZAJE SUPERVISADO
2.1. Definición y aplicaciones.
2.2 Medidas de rendimiento.
2.3 Modelos lineales
2.4 Modelos supervisados de ML: árboles, SVM, redes neuronales.
2.5 Combinación de modelos. Random Forest.
3. APRENDIZAJE NO SUPERVISADO
3.1. Definición y aplicaciones.
3.2 Medidas de rendimiento.
3.3 Clustering. Tipos
3.4 Biclustering
3.5 Manifolds. Reducción de la dimensionalidad
3.6 Análisis de la cesta
Requisitos de Machine learning aplicado usando Python
- Trabajar en el sector Economía social
- DNI | NIE vigente
Que titulación obtienes en Machine learning aplicado usando Python
Acreditación SEPE